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Motivation for Current Work

e NASA’s N+3 (2030 target) Project Goals:
— Reduce NOx emissions to 80% below ICAO CAEP6 standards
— “smaller core-size” and “higher T3” as compared to N+2/ERA
— Evaluate feasibility of drop-in alternate fuels

e Lean-Direct Injection (LDI) concepts being studied by OEMs
and several injector manufacturers to reduce emissions

e Current work: Aerodynamic Design of 37 generation LDI
(LDI-3) Injection modules using the National Combustion Code

(NCC)



Purpose of Current Work

* Use CFD analysis with the NCC to evaluate
new, updated injector design(s) to meet
NASA’s N+3 technology goals

* Impact aerodynamic design of LDI-3 Injection
modules

* Evaluate new Pilot and Main Injection Element design

* CFD predictions of LDI-3 injector performance
and emissions

— Evaluate filming fuel injection strategy for Main Injection Element



Why use NCC for LDI System Design?
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CFD Calibration Results from LDI-2 Data
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LDI-2 vs LDI-3 Injector Layout

* Large decrease in fuel-injection module complexity with
LDI-3 while maintaining effective area of individual injectors

* Much denser packing of injectors at combustor dome face

* Higher reference velocity for LDI-3 due to smaller annulus/
dome area of combustor
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LDI-3 Injector Layout

* Large decrease in fuel-injection module complexity with LDI-3
while maintaining effective area of individual injectors
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LDI-3 Filming Injector for Main Elements

« Main Injector Air flows through axial bladed swirl venturis

« Two major airflow paths (co-swirling or counter-swirling)

* One center-jet air pathway provides high velocity jet for ‘control’

* Fuel fed tangentially into cross-flowing air-stream of inner air swirlers



Parametric Desigh Goals with NCC CFD

1. Maximize the total AC, of the five-element array (Pilot
and four Mains)

2. Provide an ‘optimal’ central recirculation downstream
of the Pilot

3. Fuel-air mixing and burning in all injector elements to
meet N+3 performance, emissions



Summary of National Combustion Code (NCC)

Finite-Volume solutions of Time-dependent, Navier-Stokes
equations

2-equation, k-¢ turbulence models (non-linear, low-Re or wall-
functions)

Lagrangian spray-modeling with primary/secondary breakup and
atomization options, multi-component fuels

Reduced-kinetics, Finite-rate chemistry models

RANS time-integration and/or VLES with Time-Filtered Navier-
Stokes (TFNS) approach



Parametric |: LDI-3 Single Swirler Design

Co-Rotating Swirlers
X-Axis MidPlane ' Y-Axis MidPlane

Counter-Rotating Swirlers

-15-10 -5 0 5 10 15 20 25 30 35 40 45

Swirler Configuration Expt CFD Error (%)
52°/60° (OAS/IAS) co-rotating 0.137 0.1411 3.0
52°/60° (OAS/TAS) counter-rotating 0.134 0.1259 -1.1

48°/60° (OAS/TAS) counter-rotating 0.144  0.1467 1.9
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Single-Element Optimization
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Single-Element Spray Optimization
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Five-Element Module Design

A central ‘Pilot’ element (pressure-atomizing injection) and
four adjacent ‘Main’ elements (pre-filming injection)

Four Main elements with CFD-optimized 48°/60° outer/inner
counter-rotating axial air swirlers

Central Pilot injector with multiple, radial inflow slots for
airflow. Air inflow direction is 51% offset with respect to the
injector centerline.

Two rows of cooling holes on pilot venturi surface, with 18
and 24 cooling holes respectively



Five-Element Module CFD Setup
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Non-Reacting Flow: RANS vs TENS
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Non-Reacting Flow: RANS vs TFNS
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RANS DTFNSD
10mm 10mm
150.0
120.0
90.0 -
60.0
30.0 20mm 30mm 40mm
h . . . ' ' .
Method Total (in”) | Mains (in") | Pilot (in”) | Error (%)
Measured 0.720 0.575 0.145
NCC RANS 0.744 0.620 0.124 3.3
NCC TENS 0.752 0.621 0.131 4.4

17



Parametric Il;: LDI-3 Main Swirlers

48/60 OAS/IAS 45/60 OAS/IAS
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Parametric lll: LDI-3 Pilot Swirlers
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‘High Swirl' piLoT  12Ins: 45/ /AS | ow Swirl' PILOT
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5-Element Module: Reacting Flow

RANS TFNS (Time-Averaged)
PILOT MAINS MAINS PILOT MAINS MAINS
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5-Element Module: Reacting Flow

RANS TFNS (Time-Averaged)
PILOT MAINS MAINS PILOT MAINS MAINS

EINOx = 25 EINOx = 29
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Effect of Turbulence-Chemistry
Interaction (PDF)

TFNS w/PDF Chemistry TFNS w/Laminar Chemistry
PILOT MAINS MAINS PILOT MAINS MAINS
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Effect of Turbulence-Chemistry
Interaction (PDF)
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Summary and Future Work

NCC CFD shown to be useful to narrow the design matrix for
LDI-3 injector aerodynamic design (Main, Pilot Swirlers)

NCC CFD shown to compare well with experimental data for
filming injector spray particle distribution

Proposed LDI-3 injector redesign improves on LDI-2 injector
design with

— Reduced number of injection elements

— Reduced Complexity of fueling circuits

— Better thermal management of fuel system

Drawbacks of transverse fuel-injection approach (JPC 2015)
successfully redesigned with filming-injection approach

Turbulence-chemistry interaction approach shows large
influence of temperature and emissions predictions
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Future Work

NCC CFD to be used to evaluate 7-element module of 19-
element configuration

Evaluate NCC CFD turbulence-chemistry interaction models
(PDF and LEM) with available LDI-2 experimental database for
EINOx predictions

Investigate sensitivity of CFD solution to spray specifications
for modeling of filming injection in main swirlers
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